
Resource Tuning Session
Session between Parag and Angela, Monday, July 2, 2007. Command line entries are in bold
Courier New font and begin with a dollar sign ($). Code, products, executables, etc. are in plain
Courier New font. Highlighted portions have a pop-up note embedded with them because I had
some question about it.

General information
There are three types of data queues:

● application
○ example: binary_fetch
○ used to move executables around

● executable
○ example: dzero_reco
○ ???

● stager
○ example: fss???
○ prepares files to be moved to/from a more durable location

People who will be doing any modifications should be added to the .k5login file for user
“samgrid”.

Set up
We want to made some modifications to the resource tuning configurations. First we log in to an
appropriate node, in this case d0srv047. Preferably log in as user “samgrid” to do this stuff, but one
could log in with a root principle. Angela could not get her root principle to work, so Parag logged in
with his root principle. To get the general environment set up, type:

$ source ~sam/setups.sh

We know we will need to modify configuration files for the product “jim_job_managers”, so set that
up:

$ setup jim_job_managers

To modify things, we will be using a script called “jim_configure.sh”. In order to put that script in
our environment path, we do:

$ setup samgrid_util

Looking at an existing example

Overall queue configuration
All of the configuration files used here are written in XML code. If we want to see a list of the existing

AMB, 07/05/07
This is just an example

AMB, 07/05/07
Are the nodes listed somewhere?

AMB, 07/05/07
I didn't write down the full name and now can't remember it...

AMB, 07/05/07
Couldn't think of a good description for this

AMB, 07/05/07
I'm not sure this is the best name for the type

AMB, 07/05/07
I'm not sure this is the best name for the type

queues on this machine, we can look at the main queue configuration file using:

$ jim_configure.sh jim_job_managers

This opens a configuration file for jim_job_managers using the “vi” editor (this editor choice is
hard-coded in the script). Let's look at an example input queue called “dzero_reconstruction”:

<dzero_reconstruction>
 <input_storage name=”raw”>
 <prot_fcp queueName=”raw_download”/>
etc.???

The <input_storage> tag attribute “name” does not have any formatting restrictions. It just has to
be unique per queue configuration. For the tag called “<prot_fcp...>”, the “prot” is short for
“protocol” and “fcp” is a file transferring product so the attribute “queueName” of this tag describes
the transfer method to use.

Aside: Executables are broken down by type into queues, and then further broken down by the type of
connection (“local,” “lan,” or “wan”).

<Input_storage> configuration
The <input_storage name=”raw”> tag needs its own definition, which is done in the
jim_config configuration file. To edit the file, do:

$ jim_configure.sh jim_config

In this case <input_storage name=”raw”> has already been configured. The entry looks like this:

<input_storage name=”raw” location_selector_algorithm=”random”
location_selector_pattern=”d0sam01.fnal.gov.*cache1.*| etc.>

The “location_selector_algorithm” attribute must be either “random” or “affinity”. For the
“random” type, the “location_selector_pattern” is a list of regular expressions1 of the form
domainname::queuename with each item in the list separated by a single logical OR (represented by a
single pipe character “|”). The domain-queue combination used is selected randomly from the
expressions in the list. The “affinity” type has a similar “location_selector_pattern” except
that the regular expression list is separated by a double logical OR (represented by double pipes “||”).
The domain-queue combination to use is selected by going through the items in the list in order and
looking for a match. In some cases an “affinity” type will have a pattern list that contains both
single ORs and double ORs. Such a list is parsed by splitting at the double ORs first, with any entries
containing single ORs combined into a separate item list. The non-list items are considered first for
matches. If no match is found, then the entries in the single-OR list are considered as if they were a
“random” pattern list.

1 Most of these expressions are matched character-by-character with the star (“*”) being a wildcard for any number of
characters.

AMB, 07/05/07
This is a bit confusing... If the syntax is different for the different types of patterns, why is the attribute "location_selector_algorithm" even needed? Can't the parser interpret the type by the syntax of the pattern?

AMB, 07/05/07
We didn't actually discuss any more about this, so I'm not sure what to do with this bit of information

AMB, 07/05/07
I can't remember - were there other tags here?
Or should I just leave it as "etc."?

<Prot_fpc> configuration
The <prot_fcp> tag needs to be defined as well. This definition is in the sam_fcp configuration file.
First, set up the package, and then edit the configuration file:

$ setup sam_fcp
$ jim_configure.sh sam_fcp

Again, this tag has already been defined so no modifications were needed. The definition includes the
maximum number of transfers allowed, the time-out value, the transfer mechanism, etc.

Aside - Running jobs
To see what jobs that are running on the node you are logged in to, use:

$ ps -efwww | grep jobmanager

Configuring <dzero_monte_carlo>
First, we'll edit the jim_job_managers configuration file. A partial entry had already been created,
so we just scrolled to it. We will configure the “executable” first. There are two choices: “binary” or
“raw”. “Binary” is used to move the actual binary executable file(s) to its running location. “Raw” is
for moving input files that would be used by an executable. Since the executable does not currently
consume input files, we will only need a “binary” entry. A set of 'empty' <local_data_buffer> tags was
added so that the entry now looks like this:

<dzero_monte_carlo>
 <input????.........
 <local_data_buffer>
 </local_data_buffer>
</dzero_monte_carlo>

The empty tag set will pick up the 'default' of “<binary_fetch>”, which is the protocol used to
transfer executable files. There is currently no way to explicitly designate binary_fetch in the main
configuration file. The <binary_fetch> tag has already been used in other configurations, and so we
do not need to define it ourselves. The definition includes the directive to use the “rte” file queue. If
we had needed to configure binary_fetch, we would do that in the “jim_config” configuration
file. To edit the file, we would have used:

$ jim_configure.sh jim_config

We can run a test on the executable configuration to see which queue actually gets selected with each
call. The command for the test is of the form:

$ jim_sam_storage_negotiator_cmd.py <direction> <stationname>
<applicationname>

where <direction> is either the key word “store” or the key word “retrieve”, <stationname>
is the name of the station you are trying to negotiate with, and <applicationname> is the name of
the executable you are trying to “run.” The example we used was:

AMB, 07/05/07
I can't remember now what else was here.. What am I missing?

AMB, 07/05/07
This part doesn't hang together for me... It seems like the "raw" part should go with the "input" configuration and not the "executable" configuration. Did I misunderstand something?

$ jim_sam_storage_negotiator_cmd.py retrieve osg-ouhep binary_fetch

The output of the command looks like this:

Std Err:
Std Err:
LOCATION=<nodename>
ACCESS_Q=<queuename>

The “StdErr:” lines were blank for our example., The <nodename> is the path(?) to the executable to
be used, and <queuename> is the queue configuration that would be used.

The next step would be to configure input files, but the Monte Carlo executable does not currently
consume input files. Whatever calibration or input files it needs it grabs during execution.

The last step is to set up the output configuration. Unfortunately Parag is unsure what resources are to
be used for the output, so we stopped the exercise that this point. When Parag gets the information that
is needed, we will get together again and finish the implementation. We have not set a specific time yet.
To make sure we didn't cause trouble by leaving a partially-configured entry in the configuration file,
we also went back and took out the <local_data_buffer> tags.

AMB, 07/05/07
Is this correct? Or is it that LOCATION is the bit before the "::" and
ACCESS_Q is the bit after the "::"?

	Resource Tuning Session
	General information
	Set up
	Looking at an existing example
	Overall queue configuration
	<Input_storage> configuration
	<Prot_fpc> configuration
	Aside - Running jobs

	Configuring <dzero_monte_carlo>

